

- by re-estimating statistics using test batch.

5	source data	target da	ta	train loss				
	· - · ·	x^t, y^t		$L(x^t,y^t)$				
	x^s, y^s	x^t	L(a	$L(x^s, y^s) + L(x$				
tion	-	x^t	-					
Jothod	Source	Torgot	Error (%)					
	Source	laigei	C10-C	C100-C				
Source	train		40.8	67.2				
BN		test	17.3	42.6 [1]TE				
	tion /lethod Source SN	source data x^s, y^s tionAthodSourceSourcetrain	source datatarget da- x^t, y^t x^s, y^s x^t tion- x^t AlethodSourceTargetSourcetrainNtest	source datatarget data- x^t, y^t x^s, y^s x^t tion-x^t $L(x, x^t)$ MethodSourceSourcetraintest17.3				

- \rightarrow Test-statistics can be manipulated by malicious samples.

samples in test batch.

$$\hat{\mathcal{B}}_{ ext{mal}}^t = rg\max_{\mathcal{B}_{ ext{mal}}^t} - \mathcal{L}_{ ext{CE}}(f(x_{ ext{target}}^t; \hat{ heta}(\mathcal{B}^t)))$$

samples in test batch.

[1] Wang, Dequan, et al. Tent: Fully test-time adaptation by entropy minimization, ICRL 2021. [2] Wu, Tong, et al. Uncovering adversarial risks of test-time adaptation. ICML 2023.

MedBN: Robust Test-Time Adaptation against Malicious Test Samples Hyejin Park*, Jeongyeon Hwang*, Sunung Mun, Sangdon Park, and Jungseul Ok

Pohang University of Science and Technology (POSTECH), *equal contribution

Transformation

$$\gamma \cdot \hat{z} + \beta \longrightarrow z'$$

MedBN (Ours) $\hat{\sigma}^2 \leftarrow \text{mean} \{ (z - \hat{\mu})^2 \}$

T-SNE visualization of representative **MedBN layers** in each block.

 \rightarrow In BN layers, malicious samples are distant from the benign samples. \rightarrow However, in MedBN layers, the impact of malicious samples is significantly mitigated.

Experimental Results

The state-of-the art TTA methods are susceptible to data poisoning attacks despite extensive efforts to enhance the robustness of TTA. However, MedBN significantly counteracts the effect of malicious samples and it achieves minimal performance degradation without attacks. The integration of MedBN into existing TTA methods can be done seamlessly, demonstrating the general applicability of MedBN.

tho	hod $m = 0$				NT 11 <i>(</i> 1	Method					m = 0				
R	SoTTA	sEMA	mDIA	TeBN (ER %)	Dataset	B / m	Normalization	TeBN	TENT	ETA	SAR	SoTTA	sEMA	mDIA	TeBN (ER %)
42	21.47	18.18	33.91	14.92	CIFAR10-C	200 / 40	BatchNorm	31.02	28.13	27.42	27.56	20.40	21.65	27.96	14.92
04	7.82	8.67	8.76	15.19		(20%)	MedBN (Ours)	22.34	20.30	19.81	19.60	16.49	17.77	19.06	15.19
64	7.60	8.71	16.62	40.08		200 / 40	BatchNorm	59.80	55.10	54.45	56.40	48.33	46.89	55.43	40.08
)2	2.58	1.60	2.00	40.77	CII'ARIOO-C	(20%)	MedBN (Ours)	48.55	46.96	46.59	48.00	45.38	43.35	47.84	40.77
53	15.29	11.02	32.18	66.62	ImagaNat C	200 / 20	BatchNorm	81.46	72.82	74.15	77.74	66.05	73.21	77.28	66.62
14	0.80	0.27	1.07	69.55	Illiagemet-C	(10%)	MedBN (Ours)	69.74	68.01	68.47	69.54	64.22	70.22	69.24	69.55

Table 2. Error Rate (%) of the indiscriminate attack

Experimental Analysis

To investigate to robustness of MedBN, we plot the t-SNE of features